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I. INTRODUCTION

The geometrical structure of phase space of statistical
thermodynamics was explicitly studied by Gibbs. The geo-
metrical thermodynamics was developed by Ruppeiner and
Weinhold �1,2�. They introduced two sorts of Riemannian
metric structure representing thermodynamic fluctuation
theory, which were related to the second derivative of en-
tropy or internal energy. This theory represents a new quali-
tative tool for the study of fluctuation phenomena. The ther-
modynamic curvature has already been calculated for some
models whose thermodynamics are exactly known, where
reviews for these models can be found in �3,4�. Recently, this
approach has been utilized to study the thermodynamics of
black holes �5–8�. The thermodynamic curvature of the ideal
classical gas is zero and it could be a criterion for statistical
interaction of the system �1,9�. Janyszek and Mrugała
worked out the thermodynamic curvature for ideal Fermi and
Bose gases and reported that the sign of the thermodynamic
curvature is always different for ideal Fermi and Bose gases.
It was argued that the scalar curvature could be used to show
that fermion gases were more stable than boson gases �10�.
Also, phase-transition properties of van der Waals gas and
some other thermodynamic models have been considered
and it has been shown that the singular point of the thermo-
dynamic curvature coincides with the critical point of the
system �11,12�. Recently thermodynamic curvature of the
classical limit of the anyon gas has been worked out �13�.
For a two-dimensional system, the statistical distribution
may interpolate between fermions and bosons and respects a
fractional exclusion principle �14�. Particles with the new
statistics were named “anyons” by Wilczek �15�. The ther-
modynamic properties of systems with fractional statistical
particles or anyons have been considered and some factoriz-
able properties of these systems were introduced by Huang
�16�. It has been shown that the thermodynamic quantities of
a free anyon gas may be factorized to ideal Bose and Fermi
gases �17,18�. Using Huang’s factorized method, we will ex-
plore the thermodynamics curvature of the anyon gas in the
full physical range.

The outline of this paper is as follows. In Sec. II, the
thermodynamic properties of anyons are summarized and the
internal energy of the anyon gas is derived. In Sec. III, the
factorizable properties of fractional statistical particles are
collected and the internal energy and the particle number of
the system are evaluated with respect to the internal energy
and the particle number of fermion and boson gases. In Sec.
IV, the metric of the parameter space of this system is ob-
tained and, finally, the thermodynamic curvature of the
anyon gas in the full physical range is evaluated and its prop-
erties are investigated.

II. THERMODYNAMIC PROPERTIES OF THE IDEAL
GAS OF FRACTIONAL STATISTICAL PARTICLES

Particles with fractional statistics or anyons and their ther-
modynamic properties have been the subject of research by a
number of authors �14,19–21�. Fractional exchange statistics
arises when the many-body wave function of a system of
indistinguishable particles is allowed to acquire an arbitrary
phase ei�� upon an adiabatic exchange process of two par-
ticles. Here, � is the so-called statistical parameter, interpo-
lating between �=0 �bosons� and �=1 �fermions�. Such an
exchange produces a nontrivial phase only if the configura-
tion space of the collection of particles under study possesses
a multiply connected topological structure. Therefore, frac-
tional exchange statistics is usually restricted to two spatial
dimensions, d=2. However, fractional exchange statistics
can be formalized, to some extent, also in d=1. A different
concept of fractional statistics, namely, fractional exclusion
statistics, is based on the structure of the Hilbert space, rather
than the configuration space, of the particle assembly and is
therefore not restricted to d�2 �14,22–27�. The statistical
distribution function of anyons has been derived by Wu us-
ing Haldane’s fraction exclusion statistics �21�,

ni =
1

w�e��i−��/kT� + �
, �1�

where the function w��� satisfies the functional equation

w�����1 + w����1−� = � � e��−��/kT �2�

and � is the fractional statistical parameter. The functional
equation for w��� can be solved analytically only in a few
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special cases �28�. Equation �2� yields the correct solutions
for two familiar cases: bosons ��=0� w���=�−1 and fermi-
ons ��=1� w���=�. We can also solve Eq. �2� in the classical
limit where exp���−�� /kT�1�,

w��� = � + � − 1, �3�

ni =
1

e��i−��/kT + 2� − 1
. �4�

Deviation from the classical limit and a more general solu-
tion of Eq. �2� is given by the following function:

w��� = � + � − 1 +
c1

�
+

c2

�2 +
c3

�3 + ¯ , �5�

where the constant coefficient c1 ,c2 , . . . can be evaluated on
the condition that at each order of �, w��� satisfies Eq. �2�.
The following solutions are obtained order by order:

c1 = 1
2��1 − �� ,

c2 = 1
3��1 − ���1 − 2�� ,

c3 = 1
8��1 − ���1 − 3���2 − 3�� ,

]

cm = −
1

��m + 1�!�m�
i=0

m

�i − m�� . �6�

Now, it is straightforward to obtain the internal energy and
the particle number of the anyon gas in the classical limit and
perturbatively with a small deviation from the classical limit
by the following relation:

U = �
i

ni�i,

N = �
i

ni. �7�

In the thermodynamic limit and for two-dimensional mo-
mentum spaces of nonrelativistic free anyons with a mass m,
the summation can be replaced with the following integral:

�
i

→
V

h22�m�
0

	

d� . �8�

It should be noted that for obtaining above equations a free-
particle energy-impulse relation has been used �21�. For a
small deviation from the classical limit, we may use the first
correction in Eq. �5� and obtain the internal energy and the
particle number as is presented in �13�. We can use the other
correction terms and get far from the classical limit pertur-
batively. It is obvious that this procedure does not yield non-
perturbative information. We will review a nonperturbative
approach based on the factorizable properties of thermody-
namic quantities of the anyon gas in the next section
�16–18�.

III. FACTORIZABLE THERMODYNAMIC QUANTITIES
OF THE ANYON GAS

Huang showed that a system of free anyons is equivalent
to a system with an � fraction of fermions and a �1−��
fraction of bosons, while the transmutation between the bo-
son and the fermion is allowed. The system with boson-
fermion transmutation can be regarded as the ensemble av-
erage of M systems, which are classified as fermions �there
are �M� and bosons �there are �1−��M�, and each one of
both cases is equal to N-fermion �boson� gas existing in the
volume V and the pressure P. Therefore, the ensemble aver-
age for the thermodynamic quantity QN��� of the system
with the boson-fermion transmutation and, thereupon, the
anyon system can be factorized as �17�

QN��� = �QN�1� + �1 − ��QN�0� , �9�

where QN��� refers to the thermodynamic quantities of the
anyon system, while QN�1� and QN�0� are related to the ther-
modynamic quantities of fermion and boson gases, respec-
tively. We will write the above equation in the following
simpler form:

Qa = �Qf + �1 − ��Qb. �10�

Therefore, we can evaluate the internal energy and the par-
ticle number of the anyon gas as a composition of the inter-
nal energy and the particle number of fermion and boson
gases, while the particle numbers of anyon, fermion, and
boson gases are the same,

Ua = �Uf + �1 − ��Ub,

Na = �Nf + �1 − ��Nb. �11�

Wu also derived the relation �21�

�a

kT
= �

h2

2�Vm

N

kT
+ ln	1 − exp
−

h2

2�Vm

N

kT
�� . �12�

We can rewrite the above equation for the boson and the
fermion cases, with �=0 and �=1. It should be noted that

N = Na = Nf = Nb. �13�

It can be easily shown that

�a = �� f + �1 − ���b, �14�

where, �a, � f, and �b denote the chemical potential for
anyon, fermion, and boson cases, respectively, which is con-
sistent with the factorizable property. Also one can derive

za = zf
�zb

�1−��, �15�

where

za = exp��a/kT� = e�Na
/A�1 − e−Na
/A� ,

zf = exp�� f/kT� = eNf
/A�1 − e−Nf
/A� ,

zb = exp��b/kT� = �1 − e−Nb
/A� �16�

are the fugacity of anyon, fermion, and boson cases, respec-
tively, and A= 2�Vm

h2 and 
=1 /kT.
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Albeit it is impossible to solve the functional equation �2�
for all values of � and in the full physical range, the factor-
izable properties of thermodynamic quantities make it pos-
sible to obtain the internal energy and the particle number of
the anyon gas �16–18�. The statistical distribution function of
fermion and boson cases are given by

�ni� f =
1

e��i−��/kT + 1
,

�ni�b =
1

e��i−��/kT − 1
. �17�

Subsequently, the internal energy and the particle number of
fermion and boson gases can be evaluated as in the follow-
ing:

Uf =
2�Vm

h2 
−2�
0

	 �d�

e��−�f�/kT + 1
= − A
−2Li2�− zf� ,

Nf =
2�Vm

h2 
−1�
0

	 d�

e��−�f�/kT + 1
= A
−1 ln�1 + zf� , �18�

Ub =
2�Vm

h2 
−2�
0

	 �d�

e��−�b�/kT − 1
= A
−2Li2�zb� ,

Nb =
2�Vm

h2 
−1�
0

	 d�

e��−�b�/kT − 1
= − A
−1 ln�1 − zb� .

�19�

Therefore, the internal energy and the particle number of the
anyon gas will be

Ua = A
−2�− �Li2�− zf� + �1 − ��Li2�zb�� ,

Na = A
−1�� ln�1 + zf� − �1 − ��ln�1 − zb�� , �20�

where Lin�x� denotes the polylogarithm function. The rela-
tions between the thermodynamic quantities of the anyon gas
and the composition of the thermodynamic quantities of fer-
mion and boson gases lead to some interesting and nontrivial
integral equalities that have been presented in the Appendix.

IV. THERMODYNAMIC CURVATURE
OF ANYON GAS

Ruppeiner geometry is based on the entropy representa-
tion, where we denote the extended set of n+1 extensive
variables of the system by X= �U ,N1 , . . . ,V , . . . ,Nr�, while
Weinhold worked in the energy representation in which the
extended set of n+1 extensive variables of system are de-
noted by Y = �S ,N1 , . . . ,V , . . . ,Nr� �3�. It should be noted that
we can work in any thermodynamic potential representation
that is the Legendre transform of the entropy or the internal
energy. The metric of this representation may be the second
derivative of the thermodynamic potential with respect to
intensive variables, for example, the thermodynamic poten-
tial � which is defined as

� = ��Fi�� , �21�

where F= �1 /T ,−�1 /T , . . . , P /T , . . . ,−�r /T�. � is the Leg-
endre transform of entropy with respect to the extensive pa-
rameter Xi,

Fi =
�S

�Xi . �22�

The metric in this representation is given by

gij =
�2�

�Fi � Fj . �23�

Janyszek and Mrugała used the partition function to intro-
duce the metric geometry of the parameter space �10�,

gij =
�2 ln Z

�
i � 
 j , �24�

where 
i=Fi /k and Z is the partition function.
According to Eqs. �18�–�20�, the parameter space of ideal

fermion, boson, and anyon gases are �
 ,� f�, �
 ,�b�, and
�
 ,�a�, respectively, where 
=1 /kT and �i=−�i /kT. For
computing the thermodynamic metric, we select one of the
extended variables as the constant system scale. We will im-
plicitly pick V in working with the grand canonical ensemble
�10�. We can evaluate the metric elements of fermion �Fij�,
boson �Bij�, and anyon gases �Aij� by the definition of metric
in Eq. �24�. The metric elements of the thermodynamic space
of an ideal fermion gas are given by

F

 =
�2 ln Zf

�
2 = − 
 �Uf

�

�

�f

= − 2
−3Li2�− zf� ,

F
�f
= F�f


=
�2 ln Zf

�
 � � f
= − 
 �Uf

�� f
�




= 
−2 ln�1 + zf� ,

F�f�f
=

�2 ln Zf

�� f
2 = − 
 �Nf

�� f
�




= 
−1 zf

1 + zf
. �25�

In the same manner, the metric elements of the thermody-
namic space of an ideal boson gas are given by

B

 =
�2 ln Zb

�
2 = − 
 �Ub

�

�

�b

= 2
−3Li2�zb� ,

B
�b
= B�b
 =

�2 ln Zb

�
 � �b
= − 
 �Ub

��b
�




= − 
−2 ln�1 − zb� ,

B�b�b
=

�2 ln Zb

��b
2 = − 
 �Nb

��b
�




= 
−1 zb

1 − zb
. �26�

For simplicity, we have set the constant A=1. By using the
factorizable properties, the metric elements of thermody-
namic space of an ideal anyon gas can be derived as follows:
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A

 =
�2 ln Za

�
2

= − 
 �Ua

�

�

�a

= −
�

�

��Uf + �1 − ��Ub�

= �F

 + �1 − ��B



= 2
−3�− �Li2�− zf� + �1 − ��Li2�zb�� ,

A
�a
=

�2 ln Za

��a � 


= − 
 �Na

�

�

�a

= −
�

�

��Nf + �1 − ��Nb�

= �F
�f
+ �1 − ��B
�b

= 
−2�� ln�1 + zf� − �1 − ��ln�1 − zb�� ,

A�a�a
=

�2 ln Za

��a
2

= − 
 �Na

��a
�




= − 1/
 ��a

�Na
�




=
1

�/F�f�f
+ �1 − ��/B�b�b

= 
−1 − zfzb

2�zfzb + �zb − �zf − zfzb + zf
, �27�

To obtain the last equation, we use Eq. �15� and differentiate
with respect to N; the particle number of system


 ��a

�Na
�




= �
 �� f

�Nf
�




+ �1 − ��
 ��b

�Nb
�




. �28�

We consider a system with two thermodynamic degrees of
freedom and, therefore, the dimension of the thermodynamic
surface or the parameter space is equal to 2 �D=2�. Thus, the
scalar curvature is given by

R =
2

det g
R1212. �29�

Janyszek and Mrugała demonstrated �29� that, if the metric
elements are written purely as the second derivatives of a
certain thermodynamic potential, the thermodynamic curva-
ture may then be written in terms of the second and the third
derivatives. The sign convention for R is arbitrary, so R may
be either negative or positive for any case. Our selected sign
convention is the same as that of Janyszek and Mrugała, but

opposite from �3�. In two-dimensional spaces, the Ricci sca-
lar is defined by

R =

2� g

 g�� g
�

g

,
 g��,
 g
�,


g

,� g��,� g
�,�
�

�g

 g
�

g
� g��
�2 . �30�

Using the following equations for a fermion gas:

F

,
 = 6
−4Li2�− zf� ,

F

,�f
= F
�f,


= − 2
−3 ln�1 + zf� ,

F�f�f,

= F
�f,�f

= − 
−2 zf

1 + zf
,

F�f�f,�f
= − 
−1 zf

�1 + zf�2 , �31�

and the following equations for the boson gas:

B

,
 = − 6
−4Li2�zb� ,

B

,�b
= B
�b,
 = 2
−3 ln�1 − zb� ,

B�b�b,
 = B
�b,�b
= − 
−2 zb

1 − zb
,

B�b�b,�b
= − 
−1 zb

�1 − zb�2 , �32�

we can obtain the following equations for an anyon gas:

A

,
 = �F

,
 + �1 − ��B��,�

= 6
−4��Li2�− zf� − �1 − ��Li2�zb�� ,

A

,�a
= G
�a,


= �F

,�f
+ �1 − ��B

,�b

= 2
−3�− � ln�1 + zf� + �1 − ��ln�1 − zb�� ,

A�a�a,
 = G
�a,�a

= A�a�a

2 ��
F
�f,�f

F�f�f

2 + �1 − ��
B
�b,�b

B�b�b

2 �
= − 
−2 zfzb

2�zfzb + �zb − �zf − zfzb + zf
,
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A�a�a,�a
= A�a�a

3 ��
F�f�f,�f

F�f�f

3 + �1 − ��
B�b�b,�b

B�b�b

3 � = − 
−1zfzb��zb
2�1 + zf� + �zf

2�− 1 + zb� + zf
2�1 − zb��

�2�zfzb + �zb − �zf − zfzb + zf�3 . �33�

The third equations is obtained from Eq. �27�,

A�a�a,
 = 
 �A�a�a

�

�

�a

=
�

�

��/F�f�f

+ �1 − ��/B�b�b
�−1

�34�

and the last equation comes from differentiating Eq. �28�
with respect to N and also by using the following equation:

�2�a

�Na
2 = −

1


 �Na

��a
�3

�2Na

��a
2 . �35�

Now, we can calculate the thermodynamic curvature for the
ideal fermion, boson, and anyon gases. The Ricci scalar for
fermion and boson gases are given by

Rf = −
4
zb�Li2�− zf�ln�1 + zf� − 2zfLi2�− zf� − ln2�1 + zf� − zf ln2�1 + zf��

�2zfLi2�− zf� + ln2�1 + zf� + zf ln2�1 + zf��2 , �36�

Rb = −
4
zb�Li2�zb�ln�1 − zb� + 2zbLi2�zb� − ln2�1 − zb� + zb ln2�1 − zb��

�2zbLi2�zb� − ln2�1 − zb� + zb ln2�1 − zb��2 . �37�

The thermodynamic curvature of the ideal fermion and bo-
son gases are depicted in Figs. 1 and 2. The Ricci scalars for
fermion and boson gases are negative and positive, respec-
tively. The thermodynamic curvature of a boson gas also has
a singularity at zb=1. The Bose-Einstein condensation phase
transition occurs at this point in the three-dimensional space
�10�. In the two-dimensional space, there is no temperature
below which the ground state can be said to be macroscopi-
cally occupied in comparison to the excited states. Therefore,
as is well known, no Bose-Einstein condensation occurs in
the two-dimensional space �30,31�. But the singular property
of the thermodynamic curvature at zb=1 in the two-
dimensional space has remained from the higher dimension.
One can realize from Fig. 1 that the thermodynamic curva-
ture of a fermion gas has a maximum point. As shown in
�10,32�, we may consider the thermodynamic curvature as a
measure of the stability of the system: the bigger the value of
R, the less stable is the system. This interpretation of stability
measures the looseness of the system to fluctuations and does
not refer to the fact that the metric is definitely positive.
Therefore, the maximum point of thermodynamic curvature
of the fermion gas coincides with the less stable situation.
The thermodynamic curvature of the anyon gas is intricate
and we will explore it in the following sections.

A. Fixed temperature

In the following sections, we are going to investigate the
thermodynamic curvature of an anyon gas for an isotherm;
hence, we set 
=1. Therefore, the thermodynamic curvature
will be a function of � and za �za is a function of zf and zb�.

1. Thermodynamic curvature as a function of
� and dual points

We select values of anyon fugacity in the classical limit
and get far from that limit. The result is depicted in Fig. 3,
which shows the thermodynamic curvature as a function of �
for different values of fugacity. It is obvious that in the clas-
sical limit �small values of fugacity� the thermodynamic cur-
vature has two different signs. It is positive for �

1
2 while it

is negative for ��
1
2 . The sign of thermodynamic curvature

changes at �= 1
2 and the anyon gas behaves like an ideal

classical gas. Deviation from the classical limit moves the
zero point of the thermodynamic curvature from �= 1

2 to the
lower values �13�. Unique and interesting phenomena appear
at za�1. The thermodynamic curvature for za=1 goes to
infinity at �=0 �boson gas�, where in the higher dimensions
the Bose-Einstein condensation occurs. For za�1, the ther-
modynamic curvature has a maximum point. From Eqs. �18�
and �19�, one can find that the particle number of boson
�fermion� gas for an isotherm is convex down �up� functions
with respect to the fugacity, whereas these functions for the
anyon gas for an isotherm with respect to za face with a
mutation in curvature of the function and has an inflection
point for some values of �. This point for �=0 occurs at
za=1 while for ��0 it coincides with the maximum value of
R with a specified value of za�1. This means that the con-
vexity of these functions for any fixed � changes for a spe-
cial value of za that coincides to the maximum point of the
thermodynamic curvature. According to the stability inter-
pretation of the value of thermodynamic curvature, these
maximum points may be related to a less stable state of the
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system. It is also interesting to note that we can find two
different values of � with the same value for the thermody-
namic curvature. At some values of za, we obtain two values
for � with zero curvature, which indicates a duality relation
between these points.

2. Thermodynamic curvature as a function of za

For �= 1
2 , the full physical range of thermodynamic cur-

vature has already been considered in �13�. In this part, we

are going to evaluate the thermodynamic curvature for fixed
values of � and arbitrary values of anyon fugacity. Figure 4
represents the thermodynamic curvature of the anyon gas for
an isotherm for three different values of � as a function of
anyon fugacity. This figure suggest that for all values of �
�except �=0�, the thermodynamic curvature for large values
of fugacity may go to fixed negative values.

FIG. 1. �Color online� The thermodynamic curvature of a fer-
mion gas as a function of zf for an isotherm �
=1�.

FIG. 2. �Color online� The thermodynamic curvature of a boson
gas as a function of zb for an isotherm �
=1�.
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-1.25
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0.5
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1

1.25

FIG. 3. �Color online� The thermodynamic curvature as a func-
tion of � for an isotherm. The values of anyon fugacity have been
taken are za=0.01 �red �upper� line�, 0.3 �green �light gray� line�,
0.6 �blue line�, 1 �red �middle� line�, 1.1 �blue line�, 1.2 �black line�,
and 1.5 �purple �lower� line�.
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FIG. 4. �Color online� The thermodynamic curvature as a func-
tion of za �anyon fugacity� for �=0.3 �red �lower� line�, 0.5 �purple
�middle� line�, and 0.7 �blue �upper� line� and an isotherm in the full
physical range.
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B. Fixed fugacity

It is straightforward to obtain the thermodynamic curva-
ture at a fixed fugacity and as a function of �. We restrict
ourselves to the more interesting region za�1 and set za
=1.5. The thermodynamic curvature as a function of � and
for three different values of 
 is depicted in Fig. 5. It is
shown that by increasing the value of 
 or at lower tempera-
tures, the maximum value of the thermodynamic curvature
increases while it also goes toward the lower values of �.
This means that, at the limit of T=0, the thermodynamic
curvature for �=0 goes to large values. Although there is no
phase transition in the two-dimensional space, we see a be-
havior similar to Bose-Einstein condensation. Actually, the
maximum value and sharp changes in the thermodynamic
curvature in the za�1 region can be interpreted as the re-
maining of a phase transition in a higher three-dimensional
world, which is of course the familiar Bose-Einstein conden-
sation. The dual points with R=0 can clearly be identified in
Fig. 5.

C. Fixed particle number

We can drive the thermodynamic curvature as a function
of 
 and Na by substituting the fugacity from �15�. It has
been shown that, at T=0, particles of general exclusion sta-
tistics exhibit a Fermi surface �24�. This fact dictates the
low-temperature thermodynamics of these particles when the
particle number is conserved. Figure 6 shows the thermody-
namic curvature of the anyon gas at different values of �.
The particle number has been fixed for simplicity at Na=1.
The upper curve coincides with the thermodynamic curva-
ture of the boson gas ��=0� and the lower curve coincides
with the fermion gas ��=1�. The other curves show the ther-
modynamic curvature of the intermediate values of �. It is
clear that by increasing the value of 
 or by going toward

low temperatures, the thermodynamic curvature approaches
that of a fermion gas, which is consistent with the result in
�24�.

V. CONCLUSION

We derived the nonperturbative thermodynamic curvature
of an ideal anyon gas. It is interesting that, for za�1, there is
a maximum point for the thermodynamic curvature. At low
temperatures and at a fixed particle number, the thermody-
namic curvature approaches that of a fermion gas, which
indicates that, at T=0, particles of general exclusion statistics
exhibit a Fermi surface. It is clear from Fig. 1 that the ther-
modynamic curvature of a fermion gas is negative while it is
positive for a boson gas; likewise, the statistical interaction
for a fermion gas is repulsive but it is attractive for a boson
gas. We may propose a unique interpretation for the thermo-
dynamic curvature of the anyon gas according to its sign. It
has already been shown that, in the classical limit, statistical
interaction of an anyon gas can be attractive or repulsive
�21,33�. The attractive case corresponds to a positive curva-
ture and the repulsive one corresponds to a negative curva-
ture �13�. We may identify the attractive and the repulsive
parts for an ideal anyon gas from Figs. 3 and 5. This work
suggests that there may be dual points where we get equiva-
lent anyon gases but with different �’s.

APPENDIX

The factorizable property of anyon thermodynamic quan-
tities enable us to write the internal energy and the particle

α

R
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FIG. 5. �Color online� The thermodynamic curvature as a func-
tion of � for 
=1 �red �lower� line�, 2 �green �light gray� line�, and
3 �blue �upper maximum� line� and a fixed fugacity at za=1.5.

FIG. 6. �Color online� The thermodynamic curvature as a func-
tion of 
 while the particle number is conserved �Na=1�. The solid
and the dashed-dotted blue lines correspond to the boson ��=0� and
the fermion ��=1� gases, respectively. The other lines correspond
to the intermediate values of fraction parameter �=0.05 �black
line�, 0.1 �green line�, 0.5 �orange line�, and 0.8 �red line�.
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number of an anyon gas as a composition of the internal
energy and the particle number of fermion and boson gases
while the condition Na=Nf =Nb is preserved. Whereas the
distribution function of the anyon gas can be solved analyti-
cally for some values of the fraction parameter �, the ther-
modynamic quantities can be derived for such values of the
fraction parameter. For semions with �=1 /2, the statistical
distribution function is given by �21�

ni =
1

�1/4 + exp�2��i − �a�/kT�
=

2

�1 +
4

za
2exp�2�i/kT�

.

�A1�

So, from Eqs. �7� and �8�, we get

Ua = A
−2�
0

	 xdx

�1/4 +
1

za
2exp�2x�

,

Na = A
−1�
0

	 dx

�1/4 +
1

za
2exp�2x�

, �A2�

and the following equivalent relation can be obtained by us-
ing Eqs. �11� and �18�:

Ua = A
−2�1

2
�

0

	 xdx

1

zf
exp�x� + 1

+
1

2
�

0

	 xdx

1

zb
exp�x� − 1� ,

Na = A
−2�1

2
�

0

	 dx

1

zf
exp�x� + 1

+
1

2
�

0

	 dx

1

zb
exp�x� − 1� .

�A3�

Therefore, we get the following nontrivial relations:

�
0

	 xdx

�1/4 +
1

za
2
exp�2x�

=
1

2��0

	 xdx

1

zf

exp�x� + 1

+ �
0

	 xdx

1

zb

exp�x� − 1� ,

�
0

	 dx

�1/4 +
1

za
2
exp�2x�

=
1

2��0

	 dx

1

zf

exp�x� + 1

+ �
0

	 dx

1

zb

exp�x� − 1� , �A4�

where the value of fugacity for anyon, fermion, and boson
gases must be evaluated from Eq. �16� with the condition
Na=Nf =Nb. For example, if we set za=2, zf
=4.828 427 125, and zb=0.828 427 1247, the above condi-
tion is satisfied and the integral equalities �A4� are valid,
which can be checked by MAPLE or MATHEMATICA. The fol-
lowing nontrivial equality can also be obtained by using Eq.
�27�, with those values of fugacity for anyon, fermion, and
boson gases, which will satisfy Eq. �13�,

�
0

	 8za exp�2x�dx

�za
2 + 4 exp�2x��3/2

= 2� 1

�0
	 zf exp�x�dx

�exp�x� + zf�2

+
1

�0
	 zb exp�x�dx

�exp�x� − zb�2 �
−1

. �A5�
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